The Fundamental Group as the Structure of a Dually Affine Space

نویسندگان

  • Eraldo Giuli
  • Walter Tholen
چکیده

This paper dualizes the setting of affine spaces as originally introduced by Diers for application to algebraic geometry and expanded upon by various authors, to show that the fundamental groups of pointed topological spaces appear as the structures of dually affine spaces. The dual of the Zariski closure operator is introduced, and the 1-sphere and its copowers together with their fundamental groups are shown to be examples of complete objects with respect to the Zariski dual closure operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

State spaces of $K_0$ groups of some rings

‎Let $R$ be a ring‎ ‎with the Jacobson radical $J(R)$ and let $picolon Rto R/J(R)$ be‎ the canonical map‎. ‎Then $pi$ induces an order preserving group homomorphism‎ ‎$K_0picolon K_0(R)to K_0(R/J(R))$ and an‎ ‎affine continuous map $S(K_0pi)$ between the state space $St(R/J(R))$ and the‎ ‎state space $St(R).$‎ ‎In this paper‎, ‎we consider the natural affine map $S(K_0pi).$ We give a condition ...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

Deformation Spaces for Affine Crystallographic Groups

We develop the foundations of the deformation theory of compact complete affine space forms and affine crystallographic groups. Using methods from the theory of linear algebraic groups we show that these deformation spaces inherit an algebraic structure from the space of crystallographic homomorphisms. We also study the properties of the action of the homotopy mapping class groups on deformatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2016